Evolving Electronic Circuits for Computational Intelligence Hardware

Adrian Stoica, R. Zebulum, D. Keymeulen, Y. Jin and T. Daud
Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109
818-354-2190

adrian.stoica@jpl.nasa.gov

Abstract
This paper discusses the use of Evolvable Hardware
(EHW) in automatic synthesis of electronic circuits for
computational intelligence (Cl) hardware. EHW refers

to HW design and self-reconfiguration using
evolutionary/genetic mechanisms. Evolutionary
experiments in simulations and with a Field

Programmable Transistor Array (FPTA) chip in-the-
loop demonstrate automatic synthesis of electronic
circuits. Unconventional circuit (e.g. implementing CI
mechanisms) for which there are no textbook design
guidelines are particularly appealing to EHW. To
illustrate this situation, one demonstrates here the
evolution of circuits implementing parametrical
connectives for fuzzy logics.

1. Introduction

The application of evolution-inspired formalisms to
hardware design and self-configuration lead to the
concept of evolvable hardware (EHW). In the narrow
sense, EHW refers to self-reconfiguration of electronic
hardware by evolutionary/genetic reconfiguration
mechanisms. In a broader sense, EHW refers to various
forms of hardware from sensors and antennas to
complete evolvable space systems that could adapt to
changing environments and, moreover, increase their
performance during their operational lifetime.

The paper starts with an overview of the main concepts
of EHW. It then describes an effort toward building
evolution-oriented devices and an evolvable system on
a chip. A Field Programmable Transistor Array
architecture is used as the experimental platform for
evolutionary experiments. The platform is quite flexible
and supports implementation of both analog and digital
circuits. While previous works [1:3] illustrated the
implementation of several conventional building blocks
for electronic circuits such as logical gates,
transconductance amplifiers, filters, gaussian neuron,
etc., this paper illustrates the automatic design of the

rather more unconventional circuits for combinatorial
fuzzy logics.

The paper is organized as follows: Section 2 presents
the components of an evolvable hardware system.
Section 3 surveys some important evolutionary
experiments and applications of evolvable hardware.
Section 4 presents an evolution-oriented architecture
based on the concept of Field Programmable Transistor
Array. Section 5 illustrates how the FPTA can be used
to evolve reconfigurable circuits for combinatorial
fuzzy logic. Circuits implementing parametric
triangular norms are evolved in software and in
hardware directly on the chip.

2. Evolutionary synthesis of electronics

The main idea of evolutionary/genetic algorithms is
inspired by the principle of natural selection. In nature
the fittest individuals survive and reproduce passing
along their genetic material to their offspring, who will
inherit the characteristics that made the parents
successful. Similarly, the evolution of artificial systems
is based on a population of competing designs, the best
ones (i.e. the ones that come closer to meeting the
design specifications) being selected for further
investigation. The offspring of this elite, in which pairs
of parents were randomly selected for “mating”,
combine genetic material from two parents and may
suffer genetic “mutations” (alternatively, in asexual
reproduction the genetic code from one successful
individual may be inherited, possibly with some
random mutation). The offspring are the new generation
of competing designs. This process of trial-and-error
parallel search can last many generations, and can be
constructed with many choices on how to implement
reproduction, selection, etc.

The concept of evolvable hardware was born partially
inspired by search/optimization/adaptation mechanisms
and partially by the availability of reconfigurable



devices such as Field Programmable Gate Arrays
(FPGA). Circuits can be evolved reconfiguring
programmable devices (which is called intrinsic EHW)
or evolving software models — descriptions of the
electronic HW (referred to as extrinsic EHW).

Figure 1 illustrates the main steps of evolutionary
design for electronic circuits. Each candidate circuit
design is associated with a "genetic code" or
chromosome. The simplest representation of a
chromosome is a binary string, a succession of 0s and
1s that encode a circuit. The first step of evolutionary
synthesis is to generate a random population of
chromosomes. The chromosomes are then converted
into a model that gets simulated (e.g. by a circuit
simulator such as SPICE) and produces responses that
are compared against specifications.

Chromosomes
011101011
101100110
Ext'nnsn: oA Models
evolfio 27 of | Control
~FEegein | circuits | bitstring

Circuit|
Target responses
respons ‘ SN I S——

evolution

Figure 1 Evolutionary synthesis of electronic circuits

A solution determined by extrinsic evolution may
eventually be downloaded or become blueprint for
hardware. In intrinsic evolution the chromosomes are
converted into control bitstrings, which are downloaded
to program the reconfigurable device. The
configuration bitstring determines the functionality of
the cells of the programmable device and the
interconnection pattern between cells. Circuit responses
are compared against specifications of a target response
and individuals are ranked based on how close they
come to satisfying it. Preparation for a new iteration
loop involves generation of a new population of
individuals from the pool of the best individuals in the
previous generation. Here, some individuals are taken
as they were and some are modified by genetic
operators, such as crossover and mutation. The process
is repeated for a number of generations, resulting in
increasingly better individuals. The process is usually
ended after a given number of generations, or when the
closeness to the target response has been reached. In

practice, one or several solutions may be found among
the individuals of the last generation.

3. Evolutionary Experiments

A variety of circuits have been synthesized through
evolution. For example, Koza wused Genetic
Programming (GP) to grow an “embryonic” circuit to
one that satisfies desired requirements [4]. This
technique was used to evolve a variety of circuits,
ranging from filters to controllers. Some of Koza’s
evolved designs rediscover solutions that at some point
in time were patented, illustrating thus the power of the
GP to obtain solutions that normally require an
intelligent/innovative  human. Some  researchers
succeded evolution in hardware. For example, evolution
in hardware was demonstrated by Thompson [5], who
used an FPGA as the programmable device, and a
Genetic  Algorithm (GA) as the evolutionary
mechanism. More details on current work in evolvable
hardware can be found in [6] and [7]. Evolutions of
analog circuits reported in [4] were performed in
simulations, without concern for a physical
implementation, but rather as a proof-of-concept to
show that evolution can lead to designs that compete
with human designs, or even exceed them in
performance.

Current programmable analog devices are very
limited in capabilities and do not support the
implementation of the designs resulted in simulations
(but, in principle, one can test their validity in circuits
built from discrete components, or in an ASIC). More
recently, intrinsic evolutionary experiments were
performed on commercial Field Programmable Analog
Arrays (FPAA), custom-designed ASIC as well as other
devices.

4. Building an evolvable system-on-a-chip

The efforts toward hardware evolution have been
limited to simple circuits. In particular, for analog
circuits, this limitation comes from a lack of
appropriate reconfigurable analog devices to support
the search, which precludes searches directly in
hardware and requires evolving in software on
hardware device models. Such models require
evaluation with circuit simulators such as SPICE; the
simulators need to solve differential equations and, for
anything beyond simple circuits, they require too much
time for practical searches of millions of circuit



solutions. A hardware implementation may offer a
substantial advantage in circuit evaluation time; in
certain cases the time for hardware evaluation can be
seconds instead of days when evaluation is in software.

For efficiency of EHW applications, future
reconfigurable  devices would  benefit from
implementing evolution-oriented  reconfigurable

architectures (EORA). One of the most important
features for EORA relates to the granularity of the
programmable chip. FPAA offer only coarse
granularity which is a clear limitation; FPGAs are
offered both in versions with coarse grained and fine
grained architectures (going to gate level as the lowest
level of granularity). From the EHW perspective, it is
interesting to have programmable granularity, allowing
the sampling of novel architectures together with the
possibility of implementing standard ones. The optimal
choice of elementary block type and granularity is task
dependent. At least for experimental work in EHW, it
appears a good choice to build reconfigurable hardware
based on elements of the lowest level of granularity.
Virtual higher-level building blocks can be considered
by imposing programming constraints. Ideally, the
“virtual blocks” for evolution should be automatically
defined/clustered during evolution. In addition EORA
should be transparent architectures, allowing the
analysis and simulation of the evolved circuits. They
should also be robust enough not to be damaged by any
configuration existent in the search space, potentially
sampled by evolution. Finally, EORA should allow
evolution of both analog and digital circuits.

An evolvable system-on-a-chip architecture is
suggested in Figure 2. The main components are a Field
Programmable Transistor Array and a Genetic
Processor. The idea of a field programmable transistor
array was introduced in [8] as a first step toward
EORA. The FPTA is a concept design for hardware
reconfigurable at transistor level. As both analog and
digital CMOS circuits ultimately rely on functions
implemented with transistors, the FPTA appears as a
versatile platform for the synthesis of both analog and
digital (and mixed-signal) circuits. The architecture is
cellular, and has similarities with other cellular
architectures as encountered in FPGAs (e.g. Xilinx
X6200 family) or cellular neural networks. One key
distinguishing characteristic relates to the definition of
the elementary cell. The architecture is largely a “sea of
transistors” with interconnections implemented by other
transistors acting as signal passing devices (gray-level
switches), and with islands of RC resources in between.

FPTA — Array of
Cells

Figure 2 An evolvable SOC will integrate a Field
Programmable Transistor Array amd and Evolutionary
Processor

vt

812

S3

st 18

$20
——-—-| szz

Figure 3. FPTA cell consisting of 8 transistors and 24
programmable switches.

The status of the switches (ON or OFF) determines a
circuit topology and consequently a specific response.
Thus, the topology can be considered as a function of
switch states, and can be represented by a binary
sequence, such as “1011...”, where by convention one
can assign 1 to a switch turned ON and 0 to a switch
turned OFF. Programming the switches ON and OFF
defines a circuit for which the effects of non-zero, finite
impedance of the switches can be neglected in the first
approximation (for low frequency circuits).



5. Evolving reconfigurable circuits for
fuzzy logics

This section illustrates the evolutionary design of
infinitesimal multi-valued logic circuits, more precisely
circuits for fuzzy logics. The objective is to determine
circuit implementations for conjunctions and
disjunctions for fuzzy logics. In such logics,
conjunction and disjunction are usually interpreted by a
T-norm and by its dual T-conorm (S-norm) respectively.
A function T: [0,1] x [0,1] => [0,1] is called a
triangular norm (T-norm for short) if it satisfies the
following conditions:
e associativity (T(x,T(y,z)) = T(T(x,y),2)),
s commutativity (T(x,y) = T(y.x)),
e monotonicity (T(x,y) < T(x,z), whenever y < z),
and
» boundary condition (T(x,1) = x).
A function S: [0,1] x [0,1] => [0,1] is called a triangular
conorm (T-conorm or S-norm for short) if it satisfies
the conditions of associativity, commutativity,
monotonicity, and the boundary condition S(x,0) = x.
S and T are corresponding (or pairs) if they comply
with De Morgan's laws. Frank’s parametric T-norms
and T-conorms (also refered to as fundamental T-
norms/conorms in [9]) were the selected choice for
modeling the logical connectives. The family of Frank
T-norms is given by

MIN,y) if (s=0)
X.y if(s=1) 1
To(x,y) = . )
logsE+ 6 =1). 6 = D)|if (0<s<x), 521
s-1
MAX(0, x +y-1) if (s =0)

The family of Frank T-conorms is given by

MAX(x,y) if(s=0)
X+y-—Xy if(s=1) )]

1- logsE+ (sl'x— 1). (sl‘y— 1)] if ((0<s< ),
Tt 2 s=D

SS(XaY) =

MIN(1, x +y) if (s = o)

Electronic circuits implementing the above equations
can be used in implementations of fuzzy logic

computations or in implementing fuzzy S-T neurons.
One interesting application made possible in this
implementation is the selection of the most appropriate
s-parameter for the application at hand. Examples of the
influence of various T-norms and S-norms in fuzzy
control and automated reasoning applications can be
found in [10] and [11], and for learning in fuzzy
neurons in [12].

The following preliminary results illustrate the
possibility of evolving circuits that implement T and S
for various values of the parameter s. The circuits were
powered at 5V and the signal excursion was chosen
between 1V (for logical level “0”) and 4V (for logical
level “17”). Intermediary values were in linear
correspondence, i.e. 2.5V corresponds to logic level
0.5. etc. The experiments were performed both in
software (Spice simulations) and in hardware using 2
FPTA cells. The experiments used a population size of
128 individuals, were performed for 400 generations
(with uniform crossover, 70% crossover rate, 4%
mutation rate, tournament selection) and took around 15
minutes using 16 processors when evolving in
simulations. Each switch in the FPTA cell has a control
bit associated with it in a direct mapping. Thus there are
24 bits in the chromosome describing one cell
Interconnections experiments were done mostly with 4
bits. Thus a 2 cell experiment would use 52bits
(24*2+4).

Figures 4,5,6 show the response of circuits targeting the
implementation of fundamental T-norms for s=0, s=1,
and s=100 respectively. The diamond symbol (¢) marks
points of simulated/measured response of evolved
circuit, while the cross symbol (+) marks the points of
an ideal/target response for the given inputs. The output
(T) is mapped on the vertical axis; values on axis are in
Volts. The circuit for T-norm with s=100 is shown
mapped on two FPTA cells in Figure 7. Figure 8 shows
the response of the circuit implementing the
fundamental S-norm for s=100. Figure 9 shows the
diagonal cut for the same S-norm. All these responses
were for circuits evolved in software; for comparison
the response of a circuit evolved in hardware (for
s=100) is shown in Figure 10. Sometimes the actual
response has a higher voltage value (¢ above +) than the
ideal response for that input pair, sometimes is has a
lower value (¢ below +). The errors are observed
mainly at the domain extremes. The convergence
toward solution can be seen in Figure 11, where a
function of the error of best individual is plotted across
the number of generations.



Figure 4 Simulated response of a circuit implementing
the fundamental T-norm for s=0 (¢). Target
characteristic shown with (+). x,y axis are for inputs, z
(vertical) is the output, T. Axes are in Volts.

Figure 5 Response of a circuit implementing the

fundamental T-norm for s=1 (0). Target characteristic
shown with (+).

The results presented here are a first and preliminary
attempt at evolving fuzzy circuits. (One should mention
here the evolution of multivalued circuits reported in
[13]. In [13] the search space is different, since the
paper does not address the evolutionary synthesis of
hardware functions, but the optimization of a network
architecture, considering that the implementation of
elementary functions is known. On a slightly different
issue, one should remark here a distinction between the
Juzzy case described here and the multivalued case: the
numerical value of the output by operators described

here is usually not present in the set of input values,
making impossible a circuit solution based on switches
selecting/routing input;  e.g. for T,(0.7,0.3)=0.21],
0.21¢ {0.3, 0.7}). The purpose of the results presented
in this paper is to illustrate what can be obtained in a
rapid evolution, with no prior knowledge on the circuit
solution, with no optimization in terms of Width and
Length (W,L) of transistor channels, with limited
resources (only those found in two FPTA cells). One
limitation is the approximation error, ranging from
3.6% to a maximum of 9% MAPE (Mean Absolute
Percent Error) in software and to a peak of 11.6% in
hardware. Several factors can contribute to reducing the
approximation error. One of them is to allow more
flexibility in the selection of the points where the inputs
are applied, and where the output is collected. In this
experiment these were considered predetermined,
however it is possible to let evolution decide where to
interface the circuit with the input/output.

Figure 6 Response of a circuit implementing the
fundamental T-norm for s=100 (0). Target
characteristic shown with (+).

Another way to increase the approximation power is to
allow more resources, e.g. allow resources from more
than 2 cells. This is similar to increasing the
approximation power of neural networks when extra
neurons are added. The described experiments do not
have any parametric adjustment. The width and length
of the transistor channel were considered fixed.
However previous results indicate that parametric
optimization can produce good adjustments after the
topology has been determined [14]. This will also be
possible in hardware since the new version of the chip



will allow switch-selectable transistors with different
W/L in the same cell.

816 —

L L S—

0 | 18
NG Nq

§i%
NIV et}

s20 | M

Sint2

Figure 7 Evolved circuit implementing the fundamental
T-norm for s=100 (with the response in Figure 8).

Figure 8 Response of a circuit implementing the
fundamental S-norm for s=100 (0). Target characteristic
shown with (+).

These results are preliminary and are presented mainly
to illustrate some aspects of the application of EHW to
synthesis of electronic circuits implementing
combinatorial fuzzy logic functions. No comparison
with any state-of-the-art design tools is made, and, of
course, the performance of (computer-assisted) human
solutions could exceed the performance of the totally
automated solutions illustrated here. However, to the
author’s best knowledge, complete automated design of
the type presented here is not available in any other
tool. Moreover, this author believes that completely
automated techniques of the kind presented here will
surpass current design techniques within the next 5-7
years. The role of the humans would shift toward

providing specifications and evolutionary pressures to
guide the design to the desired result (which is not a
trivial task).

56 F
48
. Logi¢ ‘1’ (4V
g
s 3.2
2
Bas
3
o
1.6 ,
| Logic 0> (1V
08
¢
08 12 16 2 24 28 32 38 4 44

x {Volts)

Figure 9 Diagonal cut for the response in Figure 10.
Circuit implementing the fundamental S-norm for
s=100. Target characteristic shown with full line.

Figure 10 Measured response of a hardware-evolved
circuit implementing the fundamental T-norm for
s=100 (0). Target characteristic shown with (+).



'
@

S
[N)
]

o
8
et - -

[
-3

-
@

s
0o

Integrated Squared Error
nN
-~

L

[
|
A

0 5 10 15 20 25 30 35 40 45 50
Generations

Figure 11 Decreasing error between best individual in
each generation and target circuit, for the three software
evolved circuits, with s=0, s=1, s=100.

7. Conclusion

This paper presented an effort toward building
evolution-oriented devices and demonstrated how
electronic circuits can be automatically synthesized, on-
the-chip, to produce a desired functionality. It
illustrated the aspects of using evolvable hardware for
the design of wunconventional circuits such as
combinatorial circuits for fuzzy logics.

Acknowledgements

The work described in this paper was performed at the
Center for Integrated Space Microsystems, Jet
Propulsion Laboratory, California Institute of
Technology and was sponsored by the National
Aeronautics and Space Administration.

References

[1] A. Stoica, D. Keymeulen, R. Tawel, C. Lazaro and Wei-te
Li. “Evolutionary experiments with a fine-grained
reconfigurable architecture for analog and digital CMOS
circuits.” In [7], 77-84

[2] R. Zebulum, A. Stoica and D. Keymeulen, “A Flexible
Model of a CMOS Field Programmable Transistor Array
Targeted for Hardware Evolution”, Third Int. Conference on
Evolvable Systems: From Biology to Hardware (ICES2000),
Edinburgh, April 17-19, 2000, to appear

[3] A. Stoica, R. Zebulum and D. Keymeulen. Mixtrinsic
Evolution. In T. Fogarty, J. Miller, A. Thompson and P.
Thompson, (eds.), Proceedings of the Third International
Conference on Evolvable systems: From Biology to Hardware
(ICES2000), April 17-19, 2000, Edinburgh, UK. New York,
USA, Springer Verlag, 208-217

[4] J. Koza, F.H. Bennett, D. Andre, and M.A Keane,
“Automated WYWIWYG design of both the topology and
component values of analog electrical circuits using genetic
programming”, Proceedings of Genetic Programming
Conference, Stanford, CA, 1996, 28-31

[5] A. Thompson, “An evolved circuit, intrinsic in silicon,
entwined in physics”. In International Conference on
Evolvable Systems. Springer-Verlag Lecture Notes in
Computer Science, 1996, 390-405

[6] M. Sipper, D. Mange, A. Perez-Uribe (Eds.) Evolvable
Systems: From Biology To Hardware, Proc. of the Second
International Conference, ICES 98, Lausanne, Switzerland,
Springer-Verlag Lecture Notes in Computer Science, 1998.

[7]1 A. Stoica, D. Keymeulen and J. Lohn (Eds.) Proc. of the
First NASA/DoD Workshop on Evolvable Hardware, July 19-
21, 1999, Pasadena, CA IEEE Computer Society Press.

[8] Stoica, A. “Toward evolvable hardware chips:
experiments with a programmable transistor array.”
Proceedings of 7th International Conference on
Microelectronics for Neural, Fuzzy and Bio-Inspired Systems,
Granada, Spain, April 7-9, IEEE Comp Sci. Press, 1999, 156-
162

[9] Butnariu, D. and Klement, E. P., Triangular norm-based
measures and games with fuzzy coalitions, Kluwer
Academics, 1993

[10] M. M. Gupta and J. Qi, “Design of fuzzy logic
controllers based on generalized t-operators”, Fuzzy Sets and
Systems, Vol. 40, 1991, 473-389

[11] MM. Gupta and J. Qi, “Theory of T-norms and fuzzy
inference methods”, Fuzzy Sets and Systems, Vol. 40, 1991,
431-450

[12] Stoica, A., “Synaptic and somatic operators for fuzzy
neurons: which T-norms to choose?” In Proc. of 1996
Biennial Conference of the North American Fuzzy
Information Processing Society - NAFIPS, Berkeley, CA,
June 19-22, 55-58

[13] W. Wang and C. Moraga, “Design of Multivalued
Circuits using Genetic Algorithms”, Proceedings 26th
International Symposium on Multiple-Valued Logic, 1996,
216 -221

[14] Stoica, A. “On hardware evolvability and levels of
granularity”, Proc. of the International Conference
“Intelligent Systems and Semiotics 97: A Learning
Perspective, NIST, Gaithersburg, MD, Sept. 22-25, 1997

[15] A. Stoica, D. Keymeulen, V. Duong and C. Lazaro,
“Automatic Synthesis and Fault-Tolerant Experiments on an
Evolvable Hardware Platform”, In R. Profet et al.(eds.), Proc.
of IEEE Aerospace Conf., March 18-25, 2000, Big Sky, MO,
IEEE Press (CD, paper # 7_1102)



